Target-dependent control of synaptic inhibition by endocannabinoids in the thalamus.

نویسندگان

  • Yan-Gang Sun
  • Chia-Shan Wu
  • Hui-Chen Lu
  • Michael Beierlein
چکیده

Inhibitory neurons in the thalamic reticular nucleus (TRN) play a critical role in controlling information transfer between thalamus and neocortex. GABAergic synapses formed by TRN neurons contact both thalamic relay cells and neurons within TRN. These two types of synapses are thought to have distinct roles for the generation of thalamic network activity, but their selective regulation is poorly understood. In many areas throughout the brain, retrograde signaling mediated by endocannabinoids acts to dynamically regulate synaptic strength over both short and long time scales. However, retrograde signaling has never been demonstrated in the thalamus. Here, we show that depolarization-induced suppression of inhibition (DSI) is prominent at inhibitory synapses interconnecting TRN neurons. DSI is completely abolished in the presence of a cannabinoid receptor 1 (CB1R) antagonist and in mice lacking CB1Rs. DSI is prevented by DAG lipase inhibitors and prolonged by blocking the 2-arachidonoylglycerol (2-AG) degradation enzyme monoacylglycerol lipase, indicating that it is mediated by the release of 2-AG from TRN neurons. By contrast, DSI is not observed at TRN synapses targeting thalamic relay neurons. A combination of pharmacological and immunohistochemical data indicate that the differences in endocannabinoid signaling at the two synapses are mediated by a synapse-specific targeting of CB1Rs, as well as differences in endocannabinoid release between the two target neurons. Together, our results show that endocannabinoids control transmitter release at specific thalamic synapses, and could dynamically regulate sensory information processing and thalamus-mediated synchronous oscillations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus

Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...

متن کامل

Excitement Reduces Inhibition via Endocannabinoids

Previous work has suggested a role for retrograde synaptic signaling via endogenous cannabinoids in regulating the inhibitory control of neuronal activity. In this issue of Neuron, Chevaleyre and Castillo provide evidence for another form of endocannabinoid-mediated depression of hippocampal inhibition, which is activity dependent and long lasting.

متن کامل

Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity

Short-term synaptic plasticity influences how presynaptic spike patterns control the firing of postsynaptic targets. Here we investigated whether specific mechanisms of short-term plasticity are regulated in a target-dependent manner by comparing synapses made by cerebellar granule cell parallel fibers onto Golgi cells (PF-->GC synapse) and Purkinje cells (PF-->PC synapse). Both synapses exhibi...

متن کامل

Neurotransmission: Emerging Roles of Endocannabinoids

Postsynaptic release of endocannabinoids can inhibit presynaptic neurotransmitter release on short and long timescales. This retrograde inhibition occurs at both excitatory and inhibitory synapses and may provide a mechanism for synaptic gain control, short-term associative plasticity, reduction of synaptic crosstalk, and metaplasticity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 25  شماره 

صفحات  -

تاریخ انتشار 2011